3.250 \(\int (a+a \cos (c+d x))^3 (B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^5(c+d x) \, dx\)

Optimal. Leaf size=125 \[ \frac{5 a^3 (B+C) \tan (c+d x)}{2 d}+\frac{a^3 (5 B+7 C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{(5 B+3 C) \tan (c+d x) \sec (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{6 d}+a^3 C x+\frac{a B \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^2}{3 d} \]

[Out]

a^3*C*x + (a^3*(5*B + 7*C)*ArcTanh[Sin[c + d*x]])/(2*d) + (5*a^3*(B + C)*Tan[c + d*x])/(2*d) + ((5*B + 3*C)*(a
^3 + a^3*Cos[c + d*x])*Sec[c + d*x]*Tan[c + d*x])/(6*d) + (a*B*(a + a*Cos[c + d*x])^2*Sec[c + d*x]^2*Tan[c + d
*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.423576, antiderivative size = 125, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.15, Rules used = {3029, 2975, 2968, 3021, 2735, 3770} \[ \frac{5 a^3 (B+C) \tan (c+d x)}{2 d}+\frac{a^3 (5 B+7 C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{(5 B+3 C) \tan (c+d x) \sec (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{6 d}+a^3 C x+\frac{a B \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^2}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^3*(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

a^3*C*x + (a^3*(5*B + 7*C)*ArcTanh[Sin[c + d*x]])/(2*d) + (5*a^3*(B + C)*Tan[c + d*x])/(2*d) + ((5*B + 3*C)*(a
^3 + a^3*Cos[c + d*x])*Sec[c + d*x]*Tan[c + d*x])/(6*d) + (a*B*(a + a*Cos[c + d*x])^2*Sec[c + d*x]^2*Tan[c + d
*x])/(3*d)

Rule 3029

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int (a+a \cos (c+d x))^3 \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx &=\int (a+a \cos (c+d x))^3 (B+C \cos (c+d x)) \sec ^4(c+d x) \, dx\\ &=\frac{a B (a+a \cos (c+d x))^2 \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac{1}{3} \int (a+a \cos (c+d x))^2 (a (5 B+3 C)+3 a C \cos (c+d x)) \sec ^3(c+d x) \, dx\\ &=\frac{(5 B+3 C) \left (a^3+a^3 \cos (c+d x)\right ) \sec (c+d x) \tan (c+d x)}{6 d}+\frac{a B (a+a \cos (c+d x))^2 \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac{1}{6} \int (a+a \cos (c+d x)) \left (15 a^2 (B+C)+6 a^2 C \cos (c+d x)\right ) \sec ^2(c+d x) \, dx\\ &=\frac{(5 B+3 C) \left (a^3+a^3 \cos (c+d x)\right ) \sec (c+d x) \tan (c+d x)}{6 d}+\frac{a B (a+a \cos (c+d x))^2 \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac{1}{6} \int \left (15 a^3 (B+C)+\left (6 a^3 C+15 a^3 (B+C)\right ) \cos (c+d x)+6 a^3 C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx\\ &=\frac{5 a^3 (B+C) \tan (c+d x)}{2 d}+\frac{(5 B+3 C) \left (a^3+a^3 \cos (c+d x)\right ) \sec (c+d x) \tan (c+d x)}{6 d}+\frac{a B (a+a \cos (c+d x))^2 \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac{1}{6} \int \left (3 a^3 (5 B+7 C)+6 a^3 C \cos (c+d x)\right ) \sec (c+d x) \, dx\\ &=a^3 C x+\frac{5 a^3 (B+C) \tan (c+d x)}{2 d}+\frac{(5 B+3 C) \left (a^3+a^3 \cos (c+d x)\right ) \sec (c+d x) \tan (c+d x)}{6 d}+\frac{a B (a+a \cos (c+d x))^2 \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac{1}{2} \left (a^3 (5 B+7 C)\right ) \int \sec (c+d x) \, dx\\ &=a^3 C x+\frac{a^3 (5 B+7 C) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{5 a^3 (B+C) \tan (c+d x)}{2 d}+\frac{(5 B+3 C) \left (a^3+a^3 \cos (c+d x)\right ) \sec (c+d x) \tan (c+d x)}{6 d}+\frac{a B (a+a \cos (c+d x))^2 \sec ^2(c+d x) \tan (c+d x)}{3 d}\\ \end{align*}

Mathematica [B]  time = 6.35884, size = 786, normalized size = 6.29 \[ \frac{\sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^3 \left (11 B \sin \left (\frac{d x}{2}\right )+9 C \sin \left (\frac{d x}{2}\right )\right )}{24 d \left (\cos \left (\frac{c}{2}\right )-\sin \left (\frac{c}{2}\right )\right ) \left (\cos \left (\frac{c}{2}+\frac{d x}{2}\right )-\sin \left (\frac{c}{2}+\frac{d x}{2}\right )\right )}+\frac{\sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^3 \left (11 B \sin \left (\frac{d x}{2}\right )+9 C \sin \left (\frac{d x}{2}\right )\right )}{24 d \left (\sin \left (\frac{c}{2}\right )+\cos \left (\frac{c}{2}\right )\right ) \left (\sin \left (\frac{c}{2}+\frac{d x}{2}\right )+\cos \left (\frac{c}{2}+\frac{d x}{2}\right )\right )}+\frac{\sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^3 \left (-8 B \sin \left (\frac{c}{2}\right )+10 B \cos \left (\frac{c}{2}\right )-3 C \sin \left (\frac{c}{2}\right )+3 C \cos \left (\frac{c}{2}\right )\right )}{96 d \left (\cos \left (\frac{c}{2}\right )-\sin \left (\frac{c}{2}\right )\right ) \left (\cos \left (\frac{c}{2}+\frac{d x}{2}\right )-\sin \left (\frac{c}{2}+\frac{d x}{2}\right )\right )^2}+\frac{\sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^3 \left (-8 B \sin \left (\frac{c}{2}\right )-10 B \cos \left (\frac{c}{2}\right )-3 C \sin \left (\frac{c}{2}\right )-3 C \cos \left (\frac{c}{2}\right )\right )}{96 d \left (\sin \left (\frac{c}{2}\right )+\cos \left (\frac{c}{2}\right )\right ) \left (\sin \left (\frac{c}{2}+\frac{d x}{2}\right )+\cos \left (\frac{c}{2}+\frac{d x}{2}\right )\right )^2}+\frac{(-5 B-7 C) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^3 \log \left (\cos \left (\frac{c}{2}+\frac{d x}{2}\right )-\sin \left (\frac{c}{2}+\frac{d x}{2}\right )\right )}{16 d}+\frac{(5 B+7 C) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^3 \log \left (\sin \left (\frac{c}{2}+\frac{d x}{2}\right )+\cos \left (\frac{c}{2}+\frac{d x}{2}\right )\right )}{16 d}+\frac{B \sin \left (\frac{d x}{2}\right ) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^3}{48 d \left (\cos \left (\frac{c}{2}\right )-\sin \left (\frac{c}{2}\right )\right ) \left (\cos \left (\frac{c}{2}+\frac{d x}{2}\right )-\sin \left (\frac{c}{2}+\frac{d x}{2}\right )\right )^3}+\frac{B \sin \left (\frac{d x}{2}\right ) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^3}{48 d \left (\sin \left (\frac{c}{2}\right )+\cos \left (\frac{c}{2}\right )\right ) \left (\sin \left (\frac{c}{2}+\frac{d x}{2}\right )+\cos \left (\frac{c}{2}+\frac{d x}{2}\right )\right )^3}+\frac{1}{8} C x \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^3 \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^3*(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

(C*x*(a + a*Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6)/8 + ((-5*B - 7*C)*(a + a*Cos[c + d*x])^3*Log[Cos[c/2 + (d*x)
/2] - Sin[c/2 + (d*x)/2]]*Sec[c/2 + (d*x)/2]^6)/(16*d) + ((5*B + 7*C)*(a + a*Cos[c + d*x])^3*Log[Cos[c/2 + (d*
x)/2] + Sin[c/2 + (d*x)/2]]*Sec[c/2 + (d*x)/2]^6)/(16*d) + (B*(a + a*Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*Sin[
(d*x)/2])/(48*d*(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])^3) + ((a + a*Cos[c + d*x])^3*S
ec[c/2 + (d*x)/2]^6*(10*B*Cos[c/2] + 3*C*Cos[c/2] - 8*B*Sin[c/2] - 3*C*Sin[c/2]))/(96*d*(Cos[c/2] - Sin[c/2])*
(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])^2) + ((a + a*Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*(11*B*Sin[(d*x)/2]
 + 9*C*Sin[(d*x)/2]))/(24*d*(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])) + (B*(a + a*Cos[c
 + d*x])^3*Sec[c/2 + (d*x)/2]^6*Sin[(d*x)/2])/(48*d*(Cos[c/2] + Sin[c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x
)/2])^3) + ((a + a*Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*(-10*B*Cos[c/2] - 3*C*Cos[c/2] - 8*B*Sin[c/2] - 3*C*Si
n[c/2]))/(96*d*(Cos[c/2] + Sin[c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2])^2) + ((a + a*Cos[c + d*x])^3*Se
c[c/2 + (d*x)/2]^6*(11*B*Sin[(d*x)/2] + 9*C*Sin[(d*x)/2]))/(24*d*(Cos[c/2] + Sin[c/2])*(Cos[c/2 + (d*x)/2] + S
in[c/2 + (d*x)/2]))

________________________________________________________________________________________

Maple [A]  time = 0.074, size = 158, normalized size = 1.3 \begin{align*}{\frac{{a}^{3}C\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{2\,d}}+{\frac{7\,{a}^{3}C\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{2\,d}}+{\frac{11\,{a}^{3}B\tan \left ( dx+c \right ) }{3\,d}}+{\frac{{a}^{3}B\tan \left ( dx+c \right ) \left ( \sec \left ( dx+c \right ) \right ) ^{2}}{3\,d}}+3\,{\frac{{a}^{3}C\tan \left ( dx+c \right ) }{d}}+{\frac{3\,{a}^{3}B\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{2\,d}}+{\frac{5\,{a}^{3}B\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{2\,d}}+{a}^{3}Cx+{\frac{C{a}^{3}c}{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^3*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x)

[Out]

1/2/d*a^3*C*sec(d*x+c)*tan(d*x+c)+7/2/d*a^3*C*ln(sec(d*x+c)+tan(d*x+c))+11/3/d*a^3*B*tan(d*x+c)+1/3/d*a^3*B*ta
n(d*x+c)*sec(d*x+c)^2+3/d*a^3*C*tan(d*x+c)+3/2/d*a^3*B*sec(d*x+c)*tan(d*x+c)+5/2/d*a^3*B*ln(sec(d*x+c)+tan(d*x
+c))+a^3*C*x+1/d*a^3*C*c

________________________________________________________________________________________

Maxima [A]  time = 1.36913, size = 286, normalized size = 2.29 \begin{align*} \frac{4 \,{\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B a^{3} + 12 \,{\left (d x + c\right )} C a^{3} - 9 \, B a^{3}{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 3 \, C a^{3}{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, B a^{3}{\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 18 \, C a^{3}{\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 36 \, B a^{3} \tan \left (d x + c\right ) + 36 \, C a^{3} \tan \left (d x + c\right )}{12 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="maxima")

[Out]

1/12*(4*(tan(d*x + c)^3 + 3*tan(d*x + c))*B*a^3 + 12*(d*x + c)*C*a^3 - 9*B*a^3*(2*sin(d*x + c)/(sin(d*x + c)^2
 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 3*C*a^3*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(si
n(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 6*B*a^3*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 18*C*a^3*
(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 36*B*a^3*tan(d*x + c) + 36*C*a^3*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 2.09021, size = 356, normalized size = 2.85 \begin{align*} \frac{12 \, C a^{3} d x \cos \left (d x + c\right )^{3} + 3 \,{\left (5 \, B + 7 \, C\right )} a^{3} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \,{\left (5 \, B + 7 \, C\right )} a^{3} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (2 \,{\left (11 \, B + 9 \, C\right )} a^{3} \cos \left (d x + c\right )^{2} + 3 \,{\left (3 \, B + C\right )} a^{3} \cos \left (d x + c\right ) + 2 \, B a^{3}\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="fricas")

[Out]

1/12*(12*C*a^3*d*x*cos(d*x + c)^3 + 3*(5*B + 7*C)*a^3*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*(5*B + 7*C)*a^3
*cos(d*x + c)^3*log(-sin(d*x + c) + 1) + 2*(2*(11*B + 9*C)*a^3*cos(d*x + c)^2 + 3*(3*B + C)*a^3*cos(d*x + c) +
 2*B*a^3)*sin(d*x + c))/(d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**3*(B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.54588, size = 255, normalized size = 2.04 \begin{align*} \frac{6 \,{\left (d x + c\right )} C a^{3} + 3 \,{\left (5 \, B a^{3} + 7 \, C a^{3}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - 3 \,{\left (5 \, B a^{3} + 7 \, C a^{3}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) - \frac{2 \,{\left (15 \, B a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 15 \, C a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 40 \, B a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 36 \, C a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 33 \, B a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 21 \, C a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="giac")

[Out]

1/6*(6*(d*x + c)*C*a^3 + 3*(5*B*a^3 + 7*C*a^3)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(5*B*a^3 + 7*C*a^3)*log(
abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(15*B*a^3*tan(1/2*d*x + 1/2*c)^5 + 15*C*a^3*tan(1/2*d*x + 1/2*c)^5 - 40*B*a
^3*tan(1/2*d*x + 1/2*c)^3 - 36*C*a^3*tan(1/2*d*x + 1/2*c)^3 + 33*B*a^3*tan(1/2*d*x + 1/2*c) + 21*C*a^3*tan(1/2
*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d